52 research outputs found

    Studies of thermochemical water-splitting cycles

    Get PDF
    Higher temperatures and more isothermal heat profiles of solar heat sources are developed. The metal oxide metal sulfate class of cycles were suited for solar heat sources. Electrochemical oxidation of SO2 and thermochemical reactions are presented. Electrolytic oxidation of sulfur dioxide in dilute sulfuric acid solutions were appropriate for metal oxide metal sulfate cycles. The cell voltage at workable current densities required for the oxidation of SO2 was critical to the efficient operation of any metal oxide metal sulfate cycle. A sulfur dioxide depolarized electrolysis cell for the splitting of water via optimization of the anode reaction is discussed. Sulfuric acid concentrations of 30 to 35 weight percent are preferred. Platinized platinum or smooth platinum gave the best anode kinetics at a given potential of the five materials examined

    A Moessbauer spectrometer for the mineralogical analysis of the Mars surface: First temperature dependent tests of the detector and drive system

    Get PDF
    Part of the scientific payload of the Mars-96 mission is a Fe-(57)Mossbauer (MB) spectrometer installed on a small rover to be placed on the surface of Mars. The instrument is under development at the University of Darmstadt. This instrument, with some modifications, is also included in the scientific payload of the proposed MARSNET mission of the European Space Agency (ESA). A similar instrument is currently under development in the US. The reason for developing a Mossbauer spectrometer for space applications is the high abundance of the element iron, especially on the surface of Mars. The elemental composition of Martian soil was determined during the Viking mission in 1976 but not it's mineralogical composition. One believes that it is composed mainly of iron-rich clay minerals, with an iron content of about 14 (plus or minus 2) wt-percent, partly magnetic. Of extremely great interest are the oxidation state of the iron, the magnetic phases and the mineral composition of the Mars surface. To these questions MB spectroscopy can provide important information, which are not available by other methods. We report on first tests of the experimental setup in the temperature range plus 20 C to -70 C, roughly corresponding to the temperature range on the surface of Mars. Also questions concerning the signal/noise ratio (S/N) are discussed

    Moessbauer Mineralogy of Rock, Soil, and Dust at Gusev Crater, Mars: Spirit's Journey through Weakly Altered Olivine Basalt on the Plains and Pervasively Altered Basalt in the Columbia Hills

    Get PDF
    The Moessbauer spectrometer on Spirit measured the oxidation state of Fe, identified Fe-bearing phases, and measured relative abundances of Fe among those phases for surface materials on the plains and in the Columbia Hills of Gusev crater. Eight Fe-bearing phases were identified: olivine, pyroxene, ilmenite, magnetite, nanophase ferric oxide (npOx), hematite, goethite, and a Fe(3+)-sulfate. Adirondack basaltic rocks on the plains are nearly unaltered (Fe(3+)/Fe(sub T)Px), and minor npOx and magnetite. Columbia Hills basaltic rocks are nearly unaltered (Peace and Backstay), moderately altered (WoolyPatch, Wishstone, and Keystone), and pervasively altered (e.g., Clovis, Uchben, Watchtower, Keel, and Paros with Fe(3+)/Fe(sub T) approx.0.6-0.9). Fe from pyroxene is greater than Fe from olivine (Ol sometimes absent), and Fe(2+) from Ol+Px is 40-49% and 9-24% for moderately and pervasively altered materials, respectively. Ilmenite (Fe from Ilm approx.3-6%) is present in Backstay, Wishstone, Keystone, and related rocks along with magnetite (Fe from Mt approx. 10-15%). Remaining Fe is present as npOx, hematite, and goethite in variable proportions. Clovis has the highest goethite content (Fe from Gt=40%). Goethite (alpha-FeOOH) is mineralogical evidence for aqueous processes because it has structural hydroxide and is formed under aqueous conditions. Relatively unaltered basaltic soils (Fe(3+)/Fe(sub T) approx. 0.3) occur throughout Gusev crater (approx. 60-80% Fe from Ol+Px, approx. 10-30% from npOx, and approx. 10% from Mt). PasoRobles soil in the Columbia Hills has a unique occurrence of high concentrations of Fe(3+)-sulfate (approx. 65% of Fe). Magnetite is identified as a strongly magnetic phase in Martian soil and dust

    Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills

    Get PDF
    The Mössbauer spectrometer on Spirit measured the oxidation state of Fe, identified Fe-bearing phases, and measured relative abundances of Fe among those phases for surface materials on the plains and in the Columbia Hills of Gusev crater. Eight Fe-bearing phases were identified: olivine, pyroxene, ilmenite, magnetite, nanophase ferric oxide (npOx), hematite, goethite, and a Fe3+-sulfate. Adirondack basaltic rocks on the plains are nearly unaltered (Fe3+/FeT < 0.2) with Fe from olivine, pyroxene (Ol > Px), and minor npOx and magnetite. Columbia Hills basaltic rocks are nearly unaltered (Peace and Backstay), moderately altered (WoolyPatch, Wishstone, and Keystone), and pervasively altered (e.g., Clovis, Uchben, Watchtower, Keel, and Paros with Fe3+/FeT ~ 0.6–0.9). Fe from pyroxene is greater than Fe from olivine (Ol sometimes absent), and Fe2+ from Ol + Px is 40–49% and 9–24% for moderately and pervasively altered materials, respectively. Ilmenite (Fe from Ilm 3–6%) is present in Backstay, Wishstone, Keystone, and related rocks along with magnetite (Fe from Mt 10–15%). Remaining Fe is present as npOx, hematite, and goethite in variable proportions. Clovis has the highest goethite content (Fe from Gt = 40%). Goethite (α-FeOOH) is mineralogical evidence for aqueous processes because it has structural hydroxide and is formed under aqueous conditions. Relatively unaltered basaltic soils (Fe3+/FeT ~ 0.3) occur throughout Gusev crater (60–80% Fe from Ol + Px, 10–30% from npOx, and 10% from Mt). PasoRobles soil in the Columbia Hills has a unique occurrence of high concentrations of Fe3+-sulfate (65% of Fe). Magnetite is identified as a strongly magnetic phase in Martian soil and dust.Additional co-authors: E Kankeleit, P Gütlich, F Renz, SW Squyres, RE Arvidso

    Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits

    Get PDF
    The Mössbauer (MB) spectrometer on Opportunity measured the Fe oxidation state, identified Fe-bearing phases, and measured relative abundances of Fe among those phases at Meridiani Planum, Mars. Eight Fe-bearing phases were identified: jarosite (K,Na,H3O)(Fe,Al)(OH)6(SO4)2, hematite, olivine, pyroxene, magnetite, nanophase ferric oxides (npOx), an unassigned ferric phase, and metallic Fe (kamacite). Burns Formation outcrop rocks consist of hematite-rich spherules dispersed throughout S-rich rock that has nearly constant proportions of Fe3+ from jarosite, hematite, and npOx (29%, 36%, and 20% of total Fe). The high oxidation state of the S-rich rock (Fe3+/FeT ~ 0.9) implies that S is present as the sulfate anion. Jarosite is mineralogical evidence for aqueous processes under acid-sulfate conditions because it has structural hydroxide and sulfate and it forms at low pH. Hematite-rich spherules, eroded from the outcrop, and their fragments are concentrated as hematite-rich soils (lag deposits) on ripple crests (up to 68% of total Fe from hematite). Olivine, pyroxene, and magnetite are primarily associated with basaltic soils and are present as thin and locally discontinuous cover over outcrop rocks, commonly forming aeolian bedforms. Basaltic soils are more reduced (Fe3+/FeT ~ 0.2–0.4), with the fine-grained and bright aeolian deposits being the most oxidized. Average proportions of total Fe from olivine, pyroxene, npOx, magnetite, and hematite are 33%, 38%, 18%, 6%, and 4%, respectively. TheMB parameters of outcrop npOx and basaltic-soil npOx are different, but it is not possible to infer mineralogical information beyond octahedrally coordinated Fe3+. Basaltic soils at Meridiani Planum and Gusev crater have similar Fe-mineralogical compositions.Additonal co-authors: P Gütlich, E Kankeleit, T McCoy, DW Mittlefehldt, F Renz, ME Schmidt, B Zubkov, SW Squyres, RE Arvidso

    Athena MIMOS II Mossbauer spectrometer investigation

    Get PDF
    Mössbauer spectroscopy is a powerful tool for quantitative mineralogical analysis of Fe-bearing materials. The miniature Mössbauer spectrometer MIMOS II is a component of the Athena science payload launched to Mars in 2003 on both Mars Exploration Rover missions. The instrument has two major components: (1) a rover-based electronics board that contains power supplies, a dedicated central processing unit, memory, and associated support electronics and (2) a sensor head that is mounted at the end of the instrument deployment device (IDD) for placement of the instrument in physical contact with soil and rock. The velocity transducer operates at a nominal frequency of 25 Hz and is equipped with two 57Co/Rh Mössbauer sources. The reference source (5 mCi landed intensity), reference target (alpha-Fe2O3 plus alpha-Fe0), and PIN-diode detector are configured in transmission geometry and are internal to the instrument and used for its calibration. The analysis Mössbauer source (150 mCi landed intensity) irradiates Martian surface materials with a beam diameter of 1.4 cm. The backscatter radiation is measured by four PIN-diode detectors. Physical contact with surface materials is sensed with a switch-activated contact plate. The contact plate and reference target are instrumented with temperature sensors. Assuming 18% Fe for Martian surface materials, experiment time is 6–12 hours during the night for quality spectra (i.e., good counting statistics); 1–2 hours is sufficient to identify and quantify the most abundant Fe-bearing phases. Data stored internal to the instrument for selectable return to Earth include Mössbauer and pulse-height analysis spectra (512 and 256 channels, respectively) for each of the five detectors in up to 13 temperature intervals (65 Mössbauer spectra), engineering data for the velocity transducer, and temperature measurements. The total data volume is 150 kB. The mass and power consumption are 500 g (400 g for the sensor head) and 2 W, respectively. The scientific measurement objectives of the Mössbauer investigation are to obtain for rock, soil, and dust (1) the mineralogical identification of iron-bearing phases (e.g., oxides, silicates, sulfides, sulfates, and carbonates), (2) the quantitative measurement of the distribution of iron among these iron-bearing phases (e.g., the relative proportions of iron in olivine, pyroxenes, ilmenite, and magnetite in a basalt), (3) the quantitative measurement of the distribution of iron among its oxidation states (e.g., Fe2+, Fe3+, and Fe6+), and (4) the characterization of the size distribution of magnetic particles. Special geologic targets of the Mössbauer investigation are dust collected by the Athena magnets and interior rock and soil surfaces exposed by the Athena Rock Abrasion Tool and by trenching with rover wheels

    Neocortical Axon Arbors Trade-off Material and Conduction Delay Conservation

    Get PDF
    The brain contains a complex network of axons rapidly communicating information between billions of synaptically connected neurons. The morphology of individual axons, therefore, defines the course of information flow within the brain. More than a century ago, Ramón y Cajal proposed that conservation laws to save material (wire) length and limit conduction delay regulate the design of individual axon arbors in cerebral cortex. Yet the spatial and temporal communication costs of single neocortical axons remain undefined. Here, using reconstructions of in vivo labelled excitatory spiny cell and inhibitory basket cell intracortical axons combined with a variety of graph optimization algorithms, we empirically investigated Cajal's conservation laws in cerebral cortex for whole three-dimensional (3D) axon arbors, to our knowledge the first study of its kind. We found intracortical axons were significantly longer than optimal. The temporal cost of cortical axons was also suboptimal though far superior to wire-minimized arbors. We discovered that cortical axon branching appears to promote a low temporal dispersion of axonal latencies and a tight relationship between cortical distance and axonal latency. In addition, inhibitory basket cell axonal latencies may occur within a much narrower temporal window than excitatory spiny cell axons, which may help boost signal detection. Thus, to optimize neuronal network communication we find that a modest excess of axonal wire is traded-off to enhance arbor temporal economy and precision. Our results offer insight into the principles of brain organization and communication in and development of grey matter, where temporal precision is a crucial prerequisite for coincidence detection, synchronization and rapid network oscillations

    FULL-RCMA: a high utilization EPON.

    No full text
    • …
    corecore